
Journal of Computational Physics 225 (2007) 1782–1809

www.elsevier.com/locate/jcp
A numerical method for solving the 3D unsteady incompressible
Navier–Stokes equations in curvilinear domains with

complex immersed boundaries

Liang Ge, Fotis Sotiropoulos *

St. Anthony Falls Laboratory, University of Minnesota, 2 Third Avenue SE, Minneapolis, MN 55414, United States

Received 21 October 2006; received in revised form 23 January 2007; accepted 19 February 2007
Available online 25 February 2007
Abstract

A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed
boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed
boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty
aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary
(say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of
Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for sim-
ulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457–492.].
To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and effi-
cient numerical method is developed for solving the unsteady, incompressible Navier–Stokes equations in generalized
curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which
does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum
equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient,
second-order accurate fractional step methodology coupled with a Jacobian-free, Newton–Krylov solver for the
momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Sev-
eral numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of
the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe
bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we
apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model
straight aorta with an anatomical-like triple sinus.
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1. Introduction

There is growing recent interest in the development of non-boundary conforming numerical techniques for
simulating flows in domains with arbitrarily complex, immersed boundaries. Depending on the approach
adopted to satisfy the boundary conditions on solid surfaces, such techniques can be broadly classified as dif-
fused or sharp interface methodologies. The former methods are known as immersed boundary formulations
and tend to smear a solid boundary across few grid nodes due to the discrete delta function formulation they
employ to introduce the effect of the boundary on the equations of motion [2]. The latter class of methods, on
the other hand, treats solid boundaries as sharp interfaces utilizing either Cartesian, cut-cell formulations [3,4]
or hybrid Cartesian/Immersed Boundary (HCIB) approaches (see [5,6,1,7] among others)—the reader is
referred to [8,9] for more detailed discussion of this class of methods. Regardless on whether a diffused or
a sharp interface formulation is employed, however, all available non-boundary conforming methods solve
the Navier–Stokes equations in a background coordinate-conforming mesh, such as a Cartesian (e.g. [1]) or
a cylindrical (e.g. [6]) mesh. This is an inherent feature of such methods as their derivation is motivated by
the need to avoid constructing a curvilinear, boundary conforming mesh, which for arbitrarily complex
boundaries could be difficult if not impossible to construct.

There are, however, situations where hybrid methodologies combining aspects of curvilinear, body-fitted
methodologies with those of non-boundary conforming approaches could be desirable and beneficial. Such
cases are often encountered in cardiovascular flow problems where a complex, flexible immersed bound-
ary—say the leaflets of a native or a prosthetic heart valve—is embedded within a blood vessel. The empty
blood vessel geometry can be easily and efficiently discretized with a body-fitted curvilinear mesh, which can
greatly facilitate the accurate resolution of the vorticity produced within the near wall boundary layers. The
arbitrarily complex, deformable immersed boundary, on the other hand, can only be treated using a non-
boundary conforming methodology. Therefore, the numerical simulation of such problems could greatly
benefit from developing hybrid numerical techniques for simulating complex immersed boundaries moving
within a background domain discretized with a generalized curvilinear mesh. A critical prerequisite, how-
ever, for the successful implementation of this novel modeling paradigm to complex flow simulations is
the development of an accurate and efficient numerical method for solving the incompressible Navier–
Stokes equations in generalized curvilinear coordinates and on fine computational meshes. The objective
of this paper is to develop such a numerical method and demonstrate that this method can be used as
the base flow solver for simulating unsteady flows with moving boundaries immersed in a curvilinear back-
ground mesh.

Our method is based on the recently developed HCIB formulation of Gilmanov and Sotiropoulos [1] who
proposed a novel formulation for solving the incompressible Navier–Stokes equations on a hybrid, staggered/
non-staggered grid layout. As discussed extensively in Gilmanov and Sotiropoulos [1] pure non-staggered grid
formulations, even though easier to implement in conjunction with a HCIB approach, could lead to large
errors in the satisfaction of the discrete continuity equation near rapidly accelerating immersed boundaries
due to large induced pressure gradients. Staggered grid methodologies, on the other hand, can drive the dis-
crete divergence to machine zero but are cumbersome to implement in the context of HCIB approaches. The
hybrid, staggered/non-staggered grid methodology developed by Gilmanov and Sotiropoulos was shown to
alleviate these difficulties and was successfully applied to simulate flows with arbitrarily complex, deformable
bodies, including a swimming mackerel and a planktonic copepod. This method, however, is only applicable
to Cartesian meshes. Thus, a major objective of our work is to extend the method of Gilmanov and Sotiro-
poulos to generalized curvilinear coordinates. In doing so we also address the broader problem of formulating
staggered-grid methodologies in curvilinear coordinates [10,11]. We show that the hybrid staggered/non-stag-
gered grid approach of Gilmanov and Sotiropoulos can be used to satisfy the discrete continuity equation
exactly in generalized, curvilinear coordinates without requiring the explicit evaluation of Christoffel symbols
in the governing equations or the discretization of all three equations for the Cartesian velocity components at
all surfaces of each control volume.

Another major objective of our work is to enhance the efficiency of the explicit iterative solver of Gilmanov
and Sotiropoulos so that the method can be used to solve the unsteady, incompressible Navier–Stokes in gen-
eralized coordinates and on fine computational meshes. As our work is motivated by pulsatile flow problems
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in cardiovascular anatomies, the issue of computational efficiency becomes especially challenging. It is well
known, for instance, that the performance of incompressible flow solvers deteriorates rapidly in pulsatile flow
simulations where a new mass flux has to be propagated through the entire computational domain at each
time step [12]. In this work we show that a fractional step formulation, coupled with a generalized, minimal
residual (GMRES) solver with multigrid as preconditioner for the pressure equation can greatly enhance com-
putational efficiency in pulsatile flow simulations.

Our paper is organized as follows. In Section 2, we present the governing equations in generalized curvi-
linear coordinates. In Section 3, we illustrate the difficulties encountered in staggered mesh formulations in
curvilinear coordinates and review previous approaches for handling these difficulties. Subsequently we extend
the hybrid staggered/non-staggered mesh formulation of Gilmanov and Sotiropoulos to curvilinear coordi-
nates and show how this new formulation can alleviate shortcoming of previous approaches. In Section 5,
we discuss the fractional step approach used to solve the discrete equations, which is based on a multigrid pre-
conditioned GMRES iteration scheme for solving the pressure equation. In Section 7, we analyze the efficiency
and spatial accuracy of the method by conducting numerical experiments for various benchmark problems,
including the classical 2D driven cavity problem, impulsively started flow in a long straight duct, and pulsatile
flow though a 90� pipe bend. For the latter case the computed results are compared with the experimental
measurements of Rindt et al. [13]. In Section 7.4, we demonstrate the applicability of the method to flows with
moving immersed boundaries by applying it to simulate pulsatile flow through a bileaflet mechanical heart
valve mounted in a model, straight aorta geometry with an anatomical-like triple sinus geometry. Finally,
in the last section of the paper we summarize the major findings of our research and discuss future further
extensions of the numerical approach.
2. The Navier–Stokes equations in curvilinear coordinates

For the sake of completeness and to introduce some of the notation we adopt in this work, we begin our
discussion by presenting the incompressible Navier–Stokes equations for a Newtonian fluid in Cartesian coor-
dinates. Using Einstein’s tensor notation, where repeated indices imply summation unless otherwise indicated,
the governing equations read as follows (q; r ¼ 1; 2; 3):
our

oxr
¼ 0

ouq

ot
þ o

oxr
ðuruqÞ ¼ �

op
oxq
þ 1

Re
o2uq

oxroxr

ð1Þ
where {xr} are the Cartesian coordinates, {ur} are the Cartesian velocity components, p is the static pressure
divided by the density q, and Re is the Reynold number of the flow based on a characteristic length and veloc-
ity scales.

When body-fitted curvilinear grids are used to discretize the computational domain, a generalized, curvilin-
ear coordinate mapping is typically employed to transform the equations from Cartesian to curvilinear
ðn1; n2; n3Þ coordinates—where nm ¼ nmðx1; x2; x3Þ. There are two approaches one can adopt to implement such
a coordinate transformation: the partial transformation and the full transformation.

In the partial transformation approach only the independent variables {xm} are transformed to curvilinear
coordinates while the dependent variables, the components of the velocity field, are retained in terms of their
Cartesian components {um}. The partially transformed equations read as follows:
J
o
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ouq

ot
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where C, G, and D are the convective, gradient, and viscous operators defined in curvilinear coordinates as
follows:
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In the above equations, J is the Jacobian of the geometric transformation J ¼ oðn1; n2; n3Þ=oðx1; x2; x3Þ, grm is
the contravariant metric tensor grm ¼ nr

xq
nm

xq
, and Uq are the contravariant velocity components, which are re-

lated with the Cartesian velocity components as follows:
Uq ¼ urn
q
xr

ð7Þ

uq ¼ U r oxr

onq ð8Þ
In the full transformation approach both the dependent and independent variables are transformed in general-
ized curvilinear coordinates. Selecting the surface volume fluxes Vq, V q ¼ U q=J , as the dependent variables the
fully transformed governing equations read as follows:
J
oV q

oni ¼ 0 ð9Þ
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Re
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The fully transformed convective, C, and viscous, D, operators read as follows:
CðV qÞ ¼ ðV rV qÞ;r

DðV qÞ ¼ 1

Re
ðgqrðV mÞ;r þ gmrðV qÞ;rÞ;m
The covariant derivative operator that appears in the above equations is defined as
ðf mÞ;r ¼
of m

onr þ Cm
qrf

q

where Cm
qr are the Christoffel symbols of the second kind defined as
Cm
qr ¼ nm

xs

o
2xs

onq
onr
3. Overview of staggered grid formulations in curvilinear coordinates

Staggered grid methods in Cartesian coordinates typically locate the pressure at the control volume centers
(i, j,k) and the velocity components at the surface centers (see Fig. 1)—ðiþ 1=2; j; kÞ; ði; jþ 1=2; kÞ;
ði; j; k þ 1=2Þ for the u, v, and w velocity components, respectively [14]. The continuity equation is then discret-
ized by integrating it at control volumes that coincide with each computational cell whereas each momentum
equation is discretized by integrating it over a control volume centered at the corresponding surface center.
Integrating the transformed continuity equation (Eqs. (2) or (9)) over a given control volume leads to the fol-
lowing discrete approximation of the continuity equation:
Di;j;kðV Þ ¼ J
V 1

iþ1=2;j;k � V 1
i�1=2;j;k

Dn1
þ . . .

 !
¼ 0 ð11Þ
where Di;j;k denotes the discrete divergence operator, and the dots imply terms in the other two spatial direc-
tions, which are omitted for convenience. As seen in the above equation, the discretized continuity equation



Fig. 1. Velocity and pressure storage arrangement for a staggered grid layout.

1786 L. Ge, F. Sotiropoulos / Journal of Computational Physics 225 (2007) 1782–1809
requires the volume fluxes at all surface centers, which, by definition, equals to the product of the normal
velocity and the surface area. In Cartesian coordinates, the normal velocity coincides with the Cartesian veloc-
ity component defined at the surface centers (Fig. 1). Thus, the discretization of the continuity equation can be
accomplished in a straightforward manner as the required Cartesian velocity components are available at the
surface centers. In generalized curvilinear coordinates, however, the volume fluxes at surface centers may or
may not be directly available depending on the choice of dependent variables. It is this critical difference be-
tween Cartesian and curvilinear coordinates that is at the center of the difficulties encountered in curvilinear
staggered grid formulations.

If the partially transformed form of the governing equations is employed (Eqs. (2) and (3)) then the volume
fluxes at the surface centers are not available and need to be reconstructed from the Cartesian velocity com-
ponents, as follows:
V 1
iþ1=2;j;k ¼

n1
x1

J

 !
iþ1=2;j;k

ðu1Þiþ1=2;j;k þ
n1

x2

J

 !
iþ1=2;j;k

ðu2Þiþ1=2;j;k þ
n1

x3

J

 !
iþ1=2;j;k

ðu3Þiþ1=2;j;k
The rigorous and most accurate approach to accomplish the reconstruction is to define at each surface center
all three Cartesian velocity components and calculate them by integrating in time the three momentum equa-
tions–we shall refer to this approach as PT-1. This approach has been successfully applied in the past, see for
example Maliska and Raithby [15], but it essentially triples the computational cost of the curvilinear formu-
lation relative to the Cartesian formulation as in the latter only one momentum equation is solved at each
surface center. This increased cost could be very expensive in 3D simulations and has prompted the develop-
ment of approximate formulations, which define only one Cartesian component at each surface center of the
curvilinear staggered mesh (i.e., u1 component at all ðiþ 1=2; j; kÞ locations and u2; u3 for the other two surface
centers, respectively) and reconstruct the other two by interpolation–this approach will be denoted as PT-2.
More specifically, according to this approach the volume flux at the ðiþ 1=2; j; kÞ surface center would be
reconstructed by obtaining u1 directly from the solution of the x1-momentum equation and interpolating u2

and u3 from surrounding surface centers, where they are calculated by the solution of the respective momen-
tum equations. The cost of the PT-2 approach is comparable to that of the Cartesian, staggered mesh formu-
lation but this treatment works well only for geometries for which the primary flow direction along which say
the n1-curvilinear coordinate remains aligned with one of the Cartesian velocity components. Consider for
example a 90� curved duct with its straight entrance section along the horizontal, x1-direction. The curvilinear
coordinate n1 along the streamwise direction through the duct is initially aligned with the x1-axis but at the end
of curvature it is oriented along the perpendicular x2-axis. Therefore, solving the u1 momentum equation at
the ðiþ 1=2; j; kÞ nodes and interpolating the other two velocity components to construct the volume flux will
lead to the result of having to interpolate the primary velocity component at the end of curvature (the u2 com-
ponent in this case). As shown in [16] this treatment could result in odd–even decoupling of the pressure nodes
and as such the resulting algorithm is not suitable for simulating arbitrarily complex flows.
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The above difficulties with the partially transformed version of the equations can be alleviated by using the
fully transformed momentum equations, Eqs. (9) and (10). In this case it is straightforward to design an algo-
rithm that emulates the Cartesian, staggered grid formulation by defining the volume fluxes, V1, V2, and V3

at the ðiþ 1=2; j; kÞ, ði; jþ 1=2; kÞ, and ði; j; k þ 1=2Þ surface centers, respectively. This approach (denoted as
FT-1), however, requires the solution of the fully transformed form of the Navier–Stokes equations, which are
very complex and cumbersome to discretize. Furthermore, these equations involve the Christoffel symbols of
the second kind, see Eq. (10), which are expensive to compute and store and increase significantly the require-
ments for smoothness of the computational mesh as they involve second-order derivatives of the metrics of the
geometric transformation. FT-1 formulations have been proposed and applied to solve the incompressible
Navier–Stokes equations, see for example [17,18], but because of the aforementioned difficulties such methods
have not been widely used in the literature.

Staggered grid strategies that employ the fully-transformed equations, albeit indirectly, and can be consid-
ered as hybrid techniques between the PT-1 and FT-1 formulations have been proposed and successfully
applied in [19,20,11]. Methods in this category, which will be denoted here as FT-2 formulations, exploit
the relationship between the volume fluxes and the Cartesian velocity components (see Eq. (7) above) to avoid
dealing with the fully-transformed form of the Navier–Stokes equations directly. Namely, the transport equa-
tions for the volume fluxes are derived from the partially-transformed form of the Navier–Stokes equations as
follows:
oV q

ot
¼

nq
xm

J
oum

ot
¼ �

nq
xm

J
CðumÞ þ GmðpÞ �

1

Re
DðumÞ

� �
ð12Þ
Using the definition of the pressure gradient operator given by Eq. (6), the above equation reads as
follows:
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¼ �
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Eq. (13) is essentially identical to the fully-transformed equations (9) and (10) but does not explicitly involve
the Christoffel symbols, which of course will appear if the above equation is further manipulated. In a similar
fashion as FT-1 formulations, FT-2 type methods discretize at each surface center the transport equation for
the respective volume flux in the form given by Eq. (13). At the ðiþ 1=2; j; kÞ nodes, for instance, the V1 equa-
tion is semi-discretized as follows:
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is the pressure gradient operator for curvilinear cooordinates and dnr is the central differencing operator at the
surface center. The advantage of using the above discretization approach over the FT-1 formulation is that the
explicit evaluation of the Christoffel symbols is avoided. This is accomplished, however, at the expense of hav-
ing to discretize at each surface center the convective and viscous operators for all three Cartesian momentum
equations. In other words, the computational cost for discretizing the governing equations with this approach
is comparable to that of the PT-1 formulation [10].



1788 L. Ge, F. Sotiropoulos / Journal of Computational Physics 225 (2007) 1782–1809
In the following section, we present a new approach, which reduces significantly the computational work
required to discretize the governing equations.

4. Hybrid staggered/non-staggered approach in curvilinear coordinates

The curvilinear formulation we propose in this work is based on the hybrid staggered/non-staggered
approach developed by Gilmanov and Sotiropoulos [1]. They were motivated by the need to develop a method
for solving the Navier–Stokes equations in Cartesian meshes that facilitates the implementation of boundary
conditions in flows with complex, moving, immersed boundaries while satisfies the discrete continuity equa-
tion exactly. In this section, we show that the method of Gilmanov and Sotiropoulos is a natural choice
for developing an efficient curvilinear formulation that has all the advantages of a pure staggered grid formu-
lation (i.e. satisfies the discrete continuity exactly) and eliminates the need for discretizing the Christoffel sym-
bols without the excessive additional computational cost of previous formulations.

We define and store the volume fluxes Vq at the respective surface centers (as in the FT-1 and FT-2 formu-
lations) and the pressure at the volume centers. The volume fluxes are obtained by discretizing and solving
their respective transport equations, which, for reasons that will soon become apparent, are formulated as
follows:
oV q

ot
¼ �Rq � nq

xm

o

onr

nr
xm

J
p

� �
ð16Þ
where Rq ðq ¼ 1; 2; 3Þ denote the contravariant fluxes of the convective and viscous terms:
Rq ¼
nq

xm

J
CðumÞ �

1

Re
DðumÞ

� �
ð17Þ
The key difference between the proposed method and the FT-2 approach is that the Rq terms at their respec-
tive surface centers are not obtained by discretizing the C and D terms at the surface centers (as required in
approach FT-2 as shown in Eq. (14)) but are reconstructed by interpolation from the volume centers. This is
accomplished by first re-constructing the Cartesian velocity components at the volume centers—ði; j; kÞ
nodes—by interpolating the contravariant velocity components and using Eq. (8). With the Cartesian velocity
components available at the volume centers the convective and viscous terms (CðumÞ and DðumÞ for m ¼ 1; 2; 3)
can be readily discretized using the discretization method of choice (see below for details) in the same manner
as in a non-staggered mesh. Subsequently, the discrete approximations of the R

q
i;j;k, (q ¼ 1; 2; 3) terms can be

calculated using Eq. (17). This step is followed by interpolation to re-construct R1
iþ1=2;j;k, R2

i;jþ1=2;k, and R3
i;j;kþ1=2

and the semi-discrete (in space) approximation of Eq. (16) reads as follows:
d

dt
ðV 1

iþ1=2;j;kÞ ¼ R1
iþ1=2;j;k �G1

iþ1=2;j;kðpÞ ð18Þ
where G1
iþ1=2;j;kðpÞ is the same discrete curvilinear pressure gradient operator defined as in Eq. (15). Obviously

the proposed method is substantially more efficient that the FT-2 approach as it does not require the discret-
ization of the convective and viscous terms for all three momentum equations at each surface center–a step,
which as discussed earlier essentially triples the amount of computational work compared to a non-staggered
grid method. Instead the cost for discretizing these terms in the present method is similar to that of a non-stag-
gered mesh as their discretization takes place only once per time step at each ði; j; kÞ node. Of course relative to
a non-staggered formulation, the present method does incur an additional computational overhead due to the
intermediate re-construction steps needed to obtain the Cartesian velocity components at the volume centers
and then project back the discrete convective and viscous terms at the surface centers. As we will subsequently
discuss, however, the various re-construction steps involve local, one-dimensional interpolations in the trans-
formed space and as such the computational cost associated with them is minimal. The details of the imple-
mentation of the various steps of the proposed method are as follows.

Let us assume that the volume fluxes at their respective surface centers are known at a given time step—
V 1

iþ1=2;j;k, V 2
i;jþ1=2;k, and V 3

i;j;kþ1=2. Reconstruction of the Cartesian velocity components at the volume cen-
ters—ðurÞi;j;k (r ¼ 1; 2; 3)—is accomplished using the one-dimensional QUICK [21] interpolation formula,
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which was also employed for the Cartesian mesh analogue of the method by Gilmanov and Sotiropoulos [1].
For example, the V1 volume flux is calculated by interpolating along the n1 direction as follows: assuming the
grid volumes centers along i direction is numbered from 1; 2; . . . ; imax,
V 1
i;j;k ¼

1
8
ð6V 1

i�1=2;j;k � V 1
i�3=2;j;k þ 3V 1

iþ1=2;j;kÞ for i > 1

1
8
ð6V 1

iþ1=2;j;k � V 1
iþ3=2;j;k þ 3V 1

i�1=2;j;kÞ for i ¼ 1

(
ð19Þ
Similarly the V2 and V3 volume fluxes are determined by interpolating along their respective grid lines (j and k

lines, respectively). With all three volume fluxes known at the volume centers the three contravariant and
Cartesian velocity components can be readily computed using Eq. (8).

At the end of this step the Cartesian velocity components are available at the volume centers and the
partially transformed convective, CðurÞ, and viscous, DðurÞ, terms for the three momentum equations
(Eqs. (4) and (5)) can be readily discretized in a manner similar to a non-staggered grid formulation. In this
work, we employ the QUICK scheme to discretize the convective terms and standard, three-point central
differencing to discretize the viscous terms. Subsequently, the discrete approximations of the contravariant
fluxes of the convective and viscous terms can be calculated at the volume centers R

q
i;j;k, (q ¼ 1; 2; 3) using

Eq. (17).
The final step for completing the discretization of the transport equations for the volume fluxes according

to Eq. (18) is to re-construct the Rq terms at their respective surface centers. Here, similarly as in [1], we use the
following QUICK scheme (see [1] for a discussion on the rationale for biasing the direction of the interpola-
tion scheme):
R1
iþ1=2;j;k ¼

1
8
ð6R1

iþ1;j;k �R1
iþ2;j;k þ 3R1

i;j;kÞ for i < imax � 1

1
8
ð6R1

i;j;k �R1
i�1;j;k þ 3R1

iþ1;j;kÞ for i ¼ imax � 1

(
ð20Þ
Similar interpolation formulas are used to obtain R2
i;jþ1=2;k and R3

i;j;kþ1=2 along the j and k grid lines,
respectively.

5. Time integration scheme

We employ a fractional step method similar to that proposed in [22] to integrate the governing equations in
time. First, intermediate volume fluxes V qð�Þ that do not satisfy continuity are calculated by solving implicitly
(see below for details) the following momentum equations at the surface centers (we shall denote this step as
the momentum step):
1

2Dt
ð3V qð�Þ � 4V qðnÞ þ V qðn�1ÞÞ ¼ �RðV qð�ÞÞ �GqðpðnÞÞ ð21Þ
where V qðnÞ represents the solution at time step n, and Gq is the curvilinear gradient operator expressed as in
Eq. (15). In the above equations, the time derivative is discretized with a second-order backward Euler scheme
and the right hand side is calculated using the previously described hybrid staggered/non-staggered approach.

The above step is followed by a pressure correction step to satisfy the continuity equation:
3

2Dt
ðV qðnþ1Þ � V qð�ÞÞ ¼ Gqð/Þ ð22Þ

Di;j;kðV ðnþ1ÞÞ ¼ 0 ð23Þ
where Di;j;kð�Þ is the discrete divergence operator defined in Eq. (11) and / is the pressure correction, whose
value is obtained by solving the following Poisson equation:
Di;j;kðGð/ÞÞ ¼
3

2Dt
Di;j;kðV ð�ÞÞ ð24Þ
The pressure at the new time step nþ 1 can be recovered as
pnþ1 ¼ pn þ / ð25Þ
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Both the momentum and pressure-correction steps result in large sparse systems. The numerical algorithms we
employ for solving the two steps are described below.

5.1. Implicit solution of the momentum step

Our preliminary attempts to handle R in Eq. (21) explicitly were not successful, especially in fine-mesh, pul-
satile flow simulations. The explicit evaluation of R imposed severe restrictions on the physical time step Dt
and was further found to undermine the stability of the entire fractional step approach. Implicit treatment of
R, however, is not straightforward and requires careful consideration. A direct approach would require the
inversion of a very large non-linear sparse matrix and the resulting algorithm would be far too expensive
to be practical. As such, alternative iterative solvers, such as Newton–Krylov methods or approximate factor-
ization methods, provide the only feasible solution. Approximate factorization methods, say such as that
developed by Beam and Warming [23], require the evaluation of the Jacobian of the right hand side of Eq.
(21). It is easy to see, however, that in the present case the calculation of the Jacobian could be very costly
as it would require the evaluation of the Christoffel symbols, which is exactly what we tried to avoid in the
first place by developing the hybrid staggered/non-staggered grid approach. To circumvent this difficulty
we employ a matrix-free, Newton–Krylov method. In what follows, we will briefly review the basic concepts
of such methods in the context of the present problem—see [24] for a recent comprehensive review of the cur-
rent state of development and application of matrix-free Newton–Krylov methods.

The semi-discretized momentum equation (21) can be reorganized as follows:
F ðV q�Þ ¼ 1

2
ð3V q� � 4V qn þ V qn�1Þ �RðV q�Þ þ nq

xm

o

onr

nr
xm

J
pn

� �
¼ 0 ð26Þ
Advancing Eq. (21) implicitly in time is essentially equivalent to seeking the solution of the equation
F ðV q�Þ ¼ 0, which can be efficiently accomplished through the following Newton-like iteration scheme:
V q�
kþ1 ¼ V q�

k þ dV q�
k ; k ¼ 0; 1; . . . ð27Þ
where k is the iteration counter, dV q�
k ¼ �I�1F ðV q�

k Þ and I ¼ oF =oV q is the Jacobian matrix. The correction at
the kth step of Newton iteration can be obtained by solving the following linear system:
IdV q�
k ¼ F ðV q�

k Þ ð28Þ

using a Krylov subspace method, such as GMRES [25]. Solving the above linear system with GMRES, how-
ever, does not require the explicit evaluation of the Jacobian matrix I but only the matrix vector product IdV .
Following Brown and Saad [26], this product can be approximated as follows:
IdV q�
k ¼

F ðV q�
k þ hdV q�

k Þ � F ðV q�
k Þ

h

where h is a small perturbation.
In this work, we employ the matrix-free Newton–Krylov solver implemented in PETSc [27] to efficiently

solve Eq. (21). Typically about 5–7 N iterations are required to reduce the residual of F ðV q�Þ by 5 orders
or more.

5.2. Solution of the pressure-correction equation

It is well-known that the overall efficiency of any fractional step method for solving the incompressible
Navier–Stokes equations largely depends on the approach adopted to solve the pressure correction equation,
Eq. (24). If one seeks to solve the Poisson equation in simple coordinates—for example, rectangular domain
with Cartesian grids or circular domain with cylindrical grid systems—the solution can be efficiently obtained
through direct solvers [28,29]. These direct methods, however, are not useful for our work as we are interested
in complicated flow domains using generalized curvilinear grids. Iterative methods are the only feasible alter-
native to the discrete Poisson equation arising in such curvilinear grid systems. The most efficient iterative
solvers available today include Krylov subspace methods, such as GMRES and BICGSTAB [30], and multi-
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grid methods. In our work, we employ a Flexible GMRES (FGMRES) solver [31] to solve the Poisson equa-
tion. Typically a GMRES solver is used together with a preconditioner, such as Jacobi, SOR, incomplete LU
(ILU) decomposition [32], etc., in order to improve its robustness and efficiency. As we will subsequently show
through numerical experiments in Section 7.2, the convergence performance of the GMRES solver with simple
preconditioner (such as Jacobi or ILU) deteriorates dramatically with increasing mesh size for the problems
we are interested in. Such grid-size-dependent convergence performance can be effectively addressed by using a
multigrid method as preconditioner for the GMRES solver [33]. As illustrated in [33], a multigrid-precondi-
tioned GMRES solver is very robust and its overall performance is far superior than that of the multigrid
method alone. In our work, we employ a cell-centered multigrid method as the preconditioner for the FGM-
RES solver. Upon constructing the multigrid preconditioner, we need to choose the grid coarsening strategy,
smoother for fine grid levels and coarsest grid level solver, as well as the restriction and interpolation opera-
tors. For grid coarsening we implemented and tested both full coarsening and semi-coarsening strategies. The
multigrid preconditioner uses ILU decomposition as smoother for the fine grid levels and the coarsest grid
level equation is efficiently solved through a Krylov subspace solver (GMRES or BICGSTAB). We use the
standard trilinear interpolation operator for the restriction and interpolation between different levels [34]
and these operators are provided as subroutines. The coefficient matrices at each grid level are obtained by
discretizing the left-hand side of Eq. (24) at the corresponding grid level and their values are stored in the
memory for improved performance. In Section 7.2, we evaluate the convergence performance of the Poisson
equation solver and show that multigrid-preconditioned GMRES can solve the discrete pressure Poisson
equation very efficiently on fines meshes.

6. Sharp interface immersed boundary method

As stated in the introduction of this paper, our objective is to combine sharp-interface, immersed boundary
methodologies with a background curvilinear mesh in order to effectively handle complex, internal flows with
flexible immersed boundaries.The curvilinear Navier–Stokes solver described above is thus integrated with the
HCIB approach of Gilmanov and Sotiropoulos [1]. The details of the method can be found in [1]. Here it suf-
fices to state that the method employs an unstructured, triangular mesh to discretize and track the position of
a complex, moving immersed boundary, which is handled as a sharp interface. The presence of the boundary
on surrounding fluid nodes is accounted for by reconstructing boundary conditions for the velocity field at
grid nodes in the immediate vicinity of the boundary (the so-called immersed boundary nodes) by interpolat-
ing along the local normal to the boundary. Since in the current scheme the discretization of the right hand
side terms are accomplished at volume centers (where the reconstructed Cartesian velocity components are
located), the reconstruction methodology of Gilmanov and Sotiropoulos [1] can be readily implemented with-
out any modifications and will not be discussed further. The reconstruction method has been shown to be sec-
ond-order accurate on Cartesian grids with moving immersed boundaries[1]. The capability of the combined
curvilinear grid/immersed boundary method will be illustrated in Section 7.4, where we apply it to simulate
flow through a bileaflet mechanical heart valve inserted in a modeled aorta with an anatomic-like, triple sinus
structure.

7. Numerical results

In this section, we report a series of numerical experiments aimed at demonstrating the accuracy and effi-
ciency of the numerical method. We also present a series of calculations for pulsatile flow in a 90� pipe flow
aimed at validating the base flow solver. The ability of the method to simulate complex flows with moving
boundaries immersed in a curvilinear background mesh is also demonstrated by reporting results from the cal-
culation of pulsatile flow in a mechanical bileaflet heart valve.

7.1. 2D driven cavity

As we have already discussed, the present numerical method is the extension of the Cartesian method devel-
oped by Gilmanov and Sotiropoulos [1] to generalized curvilinear coordinates at least insofar as the hybrid
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staggered/non-staggered grid discretization and immersed boundary reconstruction technique are concerned.
Gilmanov and Sotiropoulos [1] carried out grid-refinement studies to demonstrate that their method is second-
order accurate for flows with moving immersed boundaries. Since when the present method is applied to a
Cartesian mesh it reduces to the discretization approach of [1], second-order convergence rate should also
be anticipated and numerical tests have indeed verified this conclusion. In this section, we focus our attention
on the spatial accuracy of the base flow solver when applied to generalized curvilinear coordinate systems.
Carrying out a rigorous grid refinement study in a curvilinear mesh, however, is not straightforward due to
the fact that the grid spacing varies throughout the computational domain. For that we adopt an indirect
approach to demonstrate the accuracy of the proposed curvilinear staggered/non-staggered grid discretization
approach. We carry out numerical simulations on both Cartesian uniform and stretched curvilinear grids and
compare the numerical solutions to show that the latter yield results that are essentially indistinguishable from
the former. Note that a similar general approach was also adopted by Wesseling et al. [11] to demonstrate the
accuracy of their curvilinear staggered grid method.

We select the standard 2D driven cavity (DC) problem [35], which is a widely used benchmark test case for
incompressible flow solvers. We consider three computational meshes all with 332 grid nodes: DC_g1 is the
base uniform Cartesian mesh while DC_g2 and DC_g3 are both distorted curvilinear grids (see Fig. 2).
The two curvilinear meshes are purposely distorted in order to set up challenging computational tests for
the various aspects of the staggered/non-staggered grid discretization (reconstruction of Cartesian velocity
components at cell centers, interpolation of the convective and viscous terms at surface centers, etc.). The cur-
vilinear mesh DC_g2 (shown in Fig. 2a) is constructed by selecting the four edges of the driven cavity as the
boundaries of the curvilinear. On each edge, the grid nodes are distributed with a hyperbolic tangent distri-
bution function with the grid spacing at one end specified as 0.01 and the other one 0.04. The curvilinear grid
DC_g3 is constructed by dividing the moving lid of the cavity into two segments by introducing an arbitrary
albeit strategically selected point (point D in Fig. 2b). The right boundary of the so resulting computational
domain consists of the horizontal portion of the lid to the right of point D and the vertical right edge of the
cavity. The corner singularity in this boundary results in a severely distorted and discontinuous mesh in a crit-
ical region of the flowfield, i.e. the region where the vorticity generated by the moving lid is ejected into the
flowfield to set up the overall recirculating flow pattern. Naturally such an irrational mesh topology would
never be used for simulating the driven cavity flow but it is selected herein in order to test the accuracy of
the numerical method under severe mesh continuity and smoothness conditions. Note, however, that highly
distorted grid cells such as those generated at the upper right corner of the cavity in DC_g3 mesh are quite
frequently encountered in complex geometries discretized with body-fitted curvilinear grids.

We carried out numerical simulations for both Re ¼ 100 and 1000 on all three grids. Steady state solutions
are obtained on all calculations. The computed results are compared with each other in Figs. 3–6. As seen in
Fig. 2. Two deliberately distorted curvilinear grids for the driven cavity flow. The four letters mark the corners of the transformed domain
in curvilinear space.



Fig. 3. Velocity profile comparisons (Re ¼ 100): (a) profile of vertical velocity component, v, along horizontal center line; (b) profile of
horizontal velocity component, u, along vertical center line. The points show benchmark result from [35]. DC_g1 is the uniform Cartesian
grid. DC_g2 and DC_g3 are the distorted curvilinear grids shown in Figs. 2a and b, respectively.

Fig. 4. Comparisons of vorticity contours (Re ¼ 100). Solid lines: DC_g1; Dashed lines: DC_g2; Dotted lines: DC_g3. DC_g1 is the
uniform Cartesian grid. DC_g2 and DC_g3 are the distorted curvilinear grids shown in Figs. 2a and b, respectively.

Fig. 5. Velocity profile comparisons (Re ¼ 1000): (a) profile of vertical velocity component, v, along horizontal center line; (b) profile of
horizontal velocity component, u, along vertical center line. DC_g1 is the uniform Cartesian grid. DC_g2 and DC_g3 are the distorted
curvilinear grids shown in Figs. 2a and b, respectively.
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Fig. 6. Comparisons of vorticity contours (Re ¼ 1000). Solid lines: DC_g1; Dashed lines: DC_g2; Dotted lines: DC_g3. DC_g1 is the
uniform Cartesian grid. DC_g2 and DC_g3 are the distorted curvilinear grids shown in Figs. 2a and b, respectively.
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Figs. 3 and 5, which illustrate the velocity profile along the vertical and horizontal center lines, the velocity field
obtained on these three different grid systems are almost identical to each other. What is more encouraging,
however, is that the vorticity fields on all three grids are very close to each other, as shown in Figs. 4 and 6.

These comparisons clearly demonstrates the ability of our curvilinear staggered/non-staggered grid
approach to yield accurate solutions on very distorted meshes that are unavoidable in practical simulations
of real-life engineering flows. It is also important to emphasize here that these results underscore the success
of our interpolation procedure for reconstructing both the Cartesian velocity components at cell centers and
the convective and viscous terms at surface centers. As we discussed in Section 4 the interpolation for both
cases is carried out in the transformed space so that the interpolation coefficients remain constant and do
not depend locally on the grid spacing (see Eqs. (19) and (20)). The results shown in Figs. 3–6 attest to the
accuracy of our approach, which should be attributed to the fact that we interpolate contarvariant fluxes
Vq and/or Rq. Fluxes have by definition the information about the local area of the surface centers embedded
in them, thus, accounting for the variations in mesh spacing automatically even though the interpolation is
carried out in the uniform transformed curvilinear space.
7.2. Impulsively started pipe flow

This case is specifically designed to measure the efficiency of the Poisson equation solver. We consider lam-
inar, impulsively started flow in a straight square duct of length l and height d ¼ 1 (Fig. 7). The flow is initially
(t = 0) stagnant everywhere. At t ¼ 0þ, the flow is impulsively accelerated by imposing a uniform incoming
flow of constant velocity U ¼ 1 at the inlet. Following the impulsive input at the inlet, the flow within the duct
will develop toward a fully-developed steady state assuming that l is sufficiently long. When this flow is sim-
ulated in a time-accurate manner, the very first time step of the simulation poses a challenging test for the effi-
ciency of any incompressible flow solver. During this first time step the flow will undergo the most dramatic
change as the flow rate at each streamwise section downstream of the inlet should adjust instantaneously from
zero to the inlet value. This very first time step can also be thought as representative of the problem an incom-
pressible flow solver will have to solve during each time step of a pulsatile flow simulation where the inlet flow
rate is continuously changing with time. Finally, since the convergence rate of iterative solvers is known to
deteriorate with aspect ratio, the severity of this problem from the standpoint of the Poisson solver can be
further exacerbated by appropriately varying the aspect ratio l=d of the duct. For these reasons we select
the impulsively accelerated straight duct flow from the initial time t ¼ 0þ to t ¼ Dt as the test case to gauge
the performance of the various versions of GMRES-based solvers for the Poisson equation and demon-
strate the superior performance of the multigrid-preconditioned GMRES approach. Calculations are carried
out using the numerical procedure described in Section 5 for Re ¼ 100 (based on U and d), Dt ¼ 0:01, various
l=d values, and successively finer meshes. All tests in this sections have been carried out by running the code in



Fig. 7. Sketch of the straight duct geometry with unit square cross-section.
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parallel on 4 CPUs and using system clock time to measure the time required by the flow solver for each case.
The so measured CPU time is scaled by the number of grid nodes to provide an objective measure of the com-
putational work associated with each algorithm.

The first set of numerical experiments is designed to gauge the effect of grid refinement on the efficiency of
the flow solver while the mesh aspect ratio is kept constant and equal to 1. We set l ¼ d ¼ 1 and consider
three, successively finer uniform grids: 333, 653 and 1293. The performance of the iterative solver is measured
through the convergence rate, which is defined as:
Fig. 8.
straigh
corresp
at the
cðkÞ ¼ kr
ðkÞk2

krð0Þk2
where r(k) is the residual for the discrete divergence of the velocity field at the kth step iteration and k � k2 de-
notes the L2-norm. In Fig. 8 we compare the performance of the FGMRES solver preconditioned with ILU
preconditioner (Fig. 8a) and with (Fig. 8b) the multigrid preconditioner by plotting the convergence rate ver-
sus CPU time per grid node. As clearly evident from Fig. 8a, the convergence rate of the FGMRES solver with
ILU preconditioner deteriorates rapidly as the grid is refined even though the mesh aspect ratio is one for all
three grids. The implementation of the multigrid method as preconditioner to FGMRES, on the other hand,
has a profound effect on the efficiency of the solver. As seen in Fig. 8b, the multigrid-FGMRES algorithm
yields a convergence rate that is nearly insensitive to mesh refinement especially when compared to the per-
formance of the ILU preconditioned FGMRES. In fact on all three grid levels, the multigrid-FGMRES algo-
rithm reduces the L2 -norm of the error by at least 10 orders within 9 iterations.
Convergence performance of the FGMRES Poisson equation solver with different preconditioner for the impulsively started
t duct case (l ¼ d ¼ 1) during the first time step of the simulation. (a) ILU preconditioner; (b) multigrid preconditioner (each circle
onding to one iteration of the FGMRES solver). c is the L2-norm of the discrete divergence of the velocity field scaled with its value

start of the iterative process. Straight line: 333 grid; Dash line: 653 grid; Dash-dot line: 1293 grid.
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A second set of numerical experiments is carried out to investigate the effect of grid aspect ratio on the
convergence of the pressure solver. It is well known that large grid aspect ratios can deteriorate the per-
formance of the multigrid solver but this problem can be effectively addressed using an appropriate grid
coarsening strategy [34]. To demonstrate the effect of the coarsening strategy on the performance of our
method, we consider two flow domains with l ¼ 10 and 100 both discretized with the same number of grid
nodes (1013)-the grid spacing in each spatial direction is uniform. By construction the resulting meshes are
uniform and have constant aspect ratios equal to 10 and 100, respectively. Fig. 9 compares the performance
of the multigrid-FGMRES algorithm in conjunction with full-coarsening and semi-coarsening (grid is
Fig. 9. Effect of the coarsening strategy used in the multigrid preconditioner of the FGMRES Poisson equation solver for the impulsively
started straight duct case during the first time step of the simulation. Two different duct aspect ratios are considered: (a) l=d ¼ 10;
(b) l=d ¼ 100. For both cases a uniform mesh with 1293 grid nodes is used. c is the L2-norm of the discrete divergence of the velocity field
scaled with its value at the start of the iterative process. Solid line: Semi-coarsening; Dash line: Full-coarsening.

Fig. 10. Geometry and typical computational grid for the 90� pipe bend case. The diameter of the bend, d, equals to 8 mm. R denotes the
radius from the center of bend curvature.
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coarsened only in the transverse plane) for the two cases. Both coarsening strategies work well for the
l ¼ 10 case but the superior performance of the semi-coarsened multigrid preconditioner is evident for
the l ¼ 100 case. The semi-coarsened preconditioner appears to be nearly insensitive to grid aspect ratio
while the performance of its full-coarsening counter-part deteriorates dramatically for the large aspect ratio
case. In fact the convergence rate of the semi-coarsening algorithm is nearly one order of magnitude faster
than that of the full-coarsening.

The superior performance of the semi-coarsening multigrid algorithm should be attributed to the fact that
for the geometry under consideration coarsening the mesh only in the transverse plane results in coarser grids
with successively smaller aspect ratios whereas full-coarsening preserves the fine-mesh aspect ratio on all mesh
levels. Therefore, the FGMRES solver preconditioned with semi-coarsened multigrid should be expected to
work well for geometries that have one dominant long spatial dimension. As such, the results presented in this
section point to the conclusion that the semi-coarsening approach should be very efficient for the cardiovas-
cular applications that have motivated the present work. This conclusion will be further reinforced in the
results shown in the two subsequent sections.
Fig. 11. Incoming flow waveform. Solid line: analytical flow waveform prescribed at the inlet of the flow domain obtained by assuming
that the inlet flow follows the Womersley solution; Points: the measurements of [13].

Fig. 12. Pulsatile flow in a 90� pipe bend. Typical convergence histories of the discrete divergence of the velocity field for several time-steps
during a pulsatile flow cycle on the 81 · 81 · 161 mesh.
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7.3. Pulsatile flow in a 90� pipe bend

This test case is selected to demonstrate the accuracy and efficiency of our method in a complex, 3D pulsatile
flow. We simulate numerically the curved pipe geometry studied experimentally by [13], which is shown in Fig. 10.
Fig. 13. Pulsatile flow in a 90� pipe bend. Measured (points) and computed streamwise velocity profiles at t = 0. Solid line: 81 · 81 · 81
grid; Dash line: 41 · 41 · 81 grid; Dash-dot line: 81 · 81 · 161 grid. The five locations corresponding to (a)–(e) are h = 0�, 22.5�, 45�, 67.5�,
and 90�, respectively. Ri and Ro represent the inner and outer bend radius from the center of bend curvature.
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The bend has a diameter of 8 mm and radius of curvature equal to 24 mm. A gear pump providing a steady flow of
Re ¼ 500 in conjunction with a piston pump generating a sinusoidal flow waveform with Reynolds number rang-
ing from �300 to 300 were used in the experiment to generate the pulsatile flow waveform shown in Fig. 11. The
resulting Womersley number of the experimental flow is 7.8. The characteristic length and velocity scales used to
Fig. 14. Pulsatile flow in a 90� pipe bend. Measured (points) and computed streamwise velocity profiles at t ¼ 0:25T . Solid line:
81 · 81 · 81 grid; Dash line: 41 · 41 · 81 grid; Dash-dot line: 81 · 81 · 161 grid. The five locations corresponding to (a) to (e) are h = 0�,
22.5�, 45�, 67.5�, and 90�, respectively.
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calculate the non-dimensional numbers and non-dimensionalize the problem are the pipe diameter and median
bulk velocity, respectively. The characteristic time scale is based on the characteristic length and velocity scales.
The so resulting non-dimensional period of the incoming flow oscillation is T ¼ 12:3.

The flow wave-form at the inlet is specified from the Womersley solution of a fully developed pulsatile flow
within a circular pipe [36]:
Fig. 15. Pulsatile flow in a 90� pipe bend. Measured (points) and computed streamwise velocity profiles at t ¼ 0:5T . Solid line: 81 · 81 · 81
grid; Dash line: 41 · 41 · 81 grid; Dash-dot line: 81 · 81 · 161 grid. The five locations corresponding to (a)–(e) are h = 0�, 22.5�, 45�, 67.5�,
and 90�, respectively.
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6. Pulsatile flow in a 90� pipe bend. Measured (points) and computed streamwise velocity profiles at t ¼ 0:75 T. Solid line:
· 81 grid; Dash line: 41 · 41 · 81 grid; Dash-dot line: 81 · 81 · 161 grid. The five locations corresponding to (a)–(e) are h = 0�,

45�, 67.5�,and 90�, respectively.
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where J0 denotes the Bessel function of the first kind and order zero, r is the radial distance from the center of
the pipe, R is the radius of the pipe, x represents the angular frequency of the flow oscillation, which is
13.31 rad/s, and m is the fluid viscosity. In order to generate the sinusoidal flow waveform that varies in accor-
dance with the experiments from Re ¼ 200 to Re ¼ 800, the constant K is selected to be 0.375. We use Matlab
to solve the above equation and the resulting solutions are stored and fed into the flow solver to specify the
time-varying inlet flow. The so computed inflow waveform is in good overall agreement with the experimental
inflow condition as shown in Fig. 11.

A curvilinear mesh is used to discretize the pipe cross-section (see Fig. 10) and calculations are carried out
for three successively finer meshes: 41 · 41 · 81, 81 · 81 · 81 and 81 · 81 · 161 in the two transverse and
streamwise directions, respectively. Each pulsatile flow cycle is divided into 1000 time steps, with a correspond-
ing non-dimensional time step DT ¼ 0:0123. The typical convergence history of Poisson equation solver for
this pulsatile flow computation is illustrated in Fig. 12, which shows the convergence history for the finest grid.
As seen, the FGMRES solver preconditioned with semi-coarsened multigrid performs very well for this more
complex flow case.

To validate our numerical simulation, we compare streamwise velocity profiles from our simulations
against the experiments in [13] at five different locations, which are h = 0�, 22.5�, 45�, 67.5� and 90�, respec-
tively. The streamwise velocity profiles at four different time instants (0, 0.25 T, 0.5 T and 0.75 T) are com-
pared with the experimental measurements in Figs. 13–16. As seen in these figures even the coarsest mesh
is adequate for obtaining grid independent solutions for this case. Furthermore, the calculated velocity profiles
are in good agreement with measurements, with the largest overall discrepancies appearing at 0.75 T time
instant. Given the fact that all three meshes yield solutions that are identical to each other, this discrepancy
could be largely attributed to the our inlet boundary conditions. As shown in Fig. 11, the wave-form pre-
scribed at the inlet exhibits the largest deviation from the experimental wave form near t = 0.75 T, i.e. the time
instant when the largest discrepancies between the calculated and measured velocity fields are observed
throughout the bend. This discrepancy not withstanding, however, the results presented in this section estab-
lish both the efficiency and accuracy of our method in complex, 3D pulsatile flow simulations.
Fig. 17. The geometry for the straight aorta configuration with a anatomic-like triple sinus structure. (a) Perspective view; (b) side view
from the downstream direction.
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7.4. Pulsatile flow in a mechanical heart valve

The last numerical experiment is designed to demonstrate the capabilities of our method in a complex, pul-
satile flow with moving immersed boundaries. We simulate physiological, pulsatile flow through a simplified
bileaflet mechanical heart valve (MHV) mounted in a model aorta geometry. Bileaflet mechanical heart valves
are widely used as prosthetic heart valves to replace malfunctioning native valves. However, all current
mechanical heart valve designs are far from ideal and their implantation is associated with complications, such
as thromboembolism, tissue overgrowth and anticoagulant related hemolysis, etc. [37]. The exact mechanisms
that lead to these undesirable complications are yet to be fully understood. They are, however, believed to be
strongly linked with the complicated hemodynamics induced with the mechanical heart valve. As such,
advancing our understanding of MHV flows through simulations is critical prerequisite for establishing and
quantifying the link between complex hemodynamics and thromboembolic complications.

As shown in Fig. 17, the modeled aorta is basically a straight pipe (as opposed to the curved shape of the
actual ascending aorta) with three bulges symmetrically attached to the side wall. These bulges are introduced
to model the three anatomic dilations (triple-sinus structure) of the ascending aorta, which occur at the aortic
root just above each one of the three leaflets of the native aortic valve. Even though the mechanical valve we
consider herein is bileaflet, when it is implanted in the aortic position it operates just upstream a triple-sinus
geometry very similar to that shown in Fig. 17. The diameter of the straight aorta is set equal to 25.4 mm.
Fig. 18. Representative views of the computational grid for the bileaflet mechanical heart valve simulation. (a) Side view showing the
background curvilinear grid used to discretize the empty aorta and the unstructured mesh used to discretized the valve leaflets; (b) cross-
sectional view. For clarity, only every third grid line is plotted.
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A simplified bileaflet MHV that represents the geometry of a St. Jude Regent 23 mm valve is inserted upstream
to the triple sinus. The actual valve contains two leaflets and a circular ring like housing structure. The two
leaflets are connected to the housing through a hinge mechanism and they open/close following the changing
of incoming pulsatile flow waveform (as shown in Fig. 19). For the purpose of this paper, we neglect the hous-
ing structure as well as the hinge mechanism here and focus on the flow phenomena induced by the two mov-
Fig. 19. (a). The prescribed incoming flow waveform and kinematics of leaflet motions for the mechanical heart valve case. (b) Definition
of leaflet opening angle h and h0 (fully closed position), hmax (fully open position).

Fig. 20. Pulsatile flow through a bileaflet mechanical heart valve. Typical convergence rate for the discrete divergence of the velocity field
over several instants in time during a simulated cardiac cycle. Empty aorta grid size: 153 · 153 · 201.
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ing leaflets. The background, empty aorta domain is discretized with a boundary-fitted, curvilinear grid system
with 153 · 153 · 201 grid nodes along the two cross-sectional directions and the streamwise direction, respec-
tively (Fig. 18). The leaflets are discretized with an unstructured, triangular grid, immersed in the background
mesh as shown in Fig. 18 and treated as sharp interfaces using the method of [1]. At the inlet we specify plug
flow velocity profile whose magnitude varies in time according to the nearly physiological, half sine flow wave-
form shown in Fig. 19. The prescribed kinematics of the leaflet motion is also shown (dashed line) in Fig. 19 in
Fig. 21. Calculated instantaneous flow patterns for the pulsatile flow through a bileaflet mechanical heart valve. (a), (c), (e) and (g): points
indicate phases in the cardiac cycle. Middle: contours of the out-of-plane vorticity component on the vertical plane of symmetry of the
valve leaflets. (b), (d), (f), and (h): Corresponding 3D coherent structures visualized using the q criterion [38].



1806 L. Ge, F. Sotiropoulos / Journal of Computational Physics 225 (2007) 1782–1809
terms of the relative position of leaflet ðh� h0Þ=ðhmax � h0Þ (where h is the leaflet opening angle and is defined
as shown in Fig. 19b, h0 and hmax represent the opening angle of the leaflet at the fully close and fully open
position, respectively, and h0 ¼ 23� while hmax ¼ 85�). The peak Reynolds number based on the peak flow
velocity U and the aorta diameter is 4000, which is within the physiological range. The period of the flow cycle
equals to 860 ms and each cycle is divided into 1200 time steps. The typical convergence history of the Poisson
equation solver is shown in Fig. 20. Even for this very complex flow case, which not only involves pulsatile
flow but also rapidly moving immersed boundaries, our method can very efficiently reduce the discrete diver-
gence of the velocity by up to 8 orders of magnitude within few iterations per simulated cycle.
Fig. 21 (continued)



L. Ge, F. Sotiropoulos / Journal of Computational Physics 225 (2007) 1782–1809 1807
To illustrate the richness of the flow patterns generated by the moving leaflets, we show in Fig. 21 the
numerical solutions at four different time instants, namely: (1) acceleration phase (Fig. 21a and b); (2) peak
systole (Fig. 21c and d); (3) deceleration phase (Fig. 21e and f); and (4) leaflets fully closed (Fig. 21g and
h). The calculated flowfields are visualized in terms of out-of-plane vorticity contours and the iso-surfaces
of q-criterion [38]. The acceleration phase up to peak systole is dominated by the growth of coherent vortical
structures shed from the valve leaflets and at the interface of the sinus and aortic flows. The non-linear inter-
actions between these vortices leads to the rapid emergence of a very complex three-dimensional flow with
multiple streamwise and hairpin-like vortices. As the deceleration phase commences and the valve leaflets
begin to close, the flow is getting rapidly disorganized and multiple small scale structures develop in the wake
of the leaflets giving rise to a very rich, chaotic-like state.

It is evident from the above figures that the overall flow patterns generated by the moving leaflets of the
MHV are very complex. The detailed discussion of the simulated flow physics, however, is beyond the scope
of this work and will be reported in future publications. The results presented herein serve to illustrate the
complexity of the flow in order to underscore the ability of our numerical method to obtain converged
unsteady solutions for a dynamically rich, 3D, pulsatile flow case with moving immersed boundaries on a fine
computational mesh.

8. Conclusions

We have developed a novel numerical method for solving the 3D, unsteady, Navier–Stokes equations in
generalized curvilinear domains containing complex, moving, immersed boundaries. The method integrates
elements from finite-volume, boundary conforming methods with a previously developed sharp-interface,
Cartesian methodology for handling complex immersed boundaries. The method is especially suited for inter-
nal flow problems for which the background flow domain within which the moving boundaries are immersed
can be efficiently discretized with boundary-fitted, generalized coordinates. Such situations are often encoun-
tered in simulations of cardiovascular flow problems where complex moving boundaries (the leaflets of a
native or a prosthetic heart valve) are immersed within a blood vessel.

To develop the method we had to address two major numerical issues. The first issue relates to the devel-
opment of a numerical technique for discretizing the Navier–Stokes equations in generalized, curvilinear stag-
gered grids. The proposed discretization method is an extension to curvilinear coordinates of the hybrid
staggered/non-staggered Cartesian grid method developed by Gilmanov and Sotiropoulos [1]. Our method
is an improvement over currently available curvilinear, staggered grid techniques as it neither requires the
explicit evaluation of the Christoffel symbols nor the discretization of all three Cartesian momentum equations
at each surface center. The accuracy of the method on deliberately skewed and stretched curvilinear grids was
demonstrated by applying to simulate flow in a lid-driven cavity. We showed that even on severely distorted
curvilinear grids the method is capable of yielding solutions of comparable accuracy to those obtained on uni-
form Cartesian grids.

The second major issue we addressed in this work is the efficiency of the resulting unsteady flow solver on
fine, curvilinear meshes. We employed a fractional-step approach coupled with a Jacobian-free, GMRES sol-
ver for the momentum step and a FGMRES method pre-conditioned with multigrid for the pressure-Poisson
equation. We showed that when combined with a semi-coarsening strategy, the multigrid method is a powerful
preconditioner of the FGMRES solver yielding convergence rates that are not very insensitive to grid size and
aspect ratio. Numerical tests for impulsively started flow in a long straight duct and pulsatile flow in a curved
pipe bend showed that the method can reduce the discrete divergence of the velocity field by 8–10 orders
within 5–10 iterations on grids with 106 grid nodes.

The ability of the method to yield converged solutions for a very complex, pulsatile flow with moving
immersed boundaries was demonstrated by applying it to simulate flow in a mechanical bileaflet heart valve
mounted in a straight, albeit anatomically-inspired aorta geometry. The convergence rate of the flow solver
even for this very complex case was comparable to that obtain in the simpler benchmark problems. The results
demonstrate that our method can resolve geometrically complex flows with very rich flow physics and point to
its potential as a powerful simulation tool for cardiovascular and other internal flow problems with moving,
immersed boundaries.
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